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Abstract: The quantum mechanical behavior of the hydrogen-bonded proton is treated by means of the intrinsic reaction coor­
dinate previously proposed. The reaction coordinate is obtained by the aid of the gradient of potential energy determined by 
CNDO/2 procedure. The effective motion along the reaction coordinate is calculated considering all vibrational motions per­
pendicular to the reaction coordinate. The statistical feature of vibrational state of malonaldehyde is discussed on the basis of 
the canonical ensemble in a heat bath of a given temperature, and the density matrix is calculated in order to examine the pro­
ton distribution on the reaction coordinate and the rate of proton transfer with relation to the temperature. An ellipse-like orbit 
of proton motion is suggested. 

The proton moves through the hydrogen bonds in many 
chemical and biological systems. Both theoretical and exper­
imental chemists have been much interested in such a problem 
for a long time.1 On theoretical ground, the detailed description 
of the proton transfer or exchange in hydrogen bonding systems 
seems to include two separated steps. The first step is to cal­
culate the potential energy surface for the proton motion. For 
this purpose, semiempirical and ab initio molecular orbital 
(MO) calculations have been carried out for a variety of sys­
tems including intra- and intermolecular hydrogen bondings.2 

These studies have given encouraging results in predicting the 
proton potentials as well as the stable geometries, hydrogen 
bond energies, and spectroscopic properties. The origin of 
hydrogen bond formation has also been explained by analyzing 
the binding energy or the charge distribution.3 

The second problem is to solve the equation of motion for 
protons on a given potential surface and to evaluate the equi­
librium constant or the rate of proton transfer after statistical 
averaging. LQwdin4 reviewed the quantum mechanical treat­
ments of proton tunneling in a double well potential of the 
hydrogen bonding in nucleotide base pairs and discussed them 
in connection with the biological duplication. Although further 
developments in this direction of research have been achieved,5 

the greater part of these works has been based on the model 
or experimentally adjusted empirical potentials. 

In order to describe such a process, one has to define the 
reaction coordinate, the curve leading from the bottom valley 
of initial state over the transition state to the valley of final state 
on the potential energy surface, inherent to the system con­
cerned. 

In the present paper, we proposed a method to treat the 
proton exchange in the intramolecular hydrogen bonding 
system by means of "intrinsic" reaction coordinate6 and apply 
it to the enol tautmer of malonaldehyde, which is the simplest 
1,3-dione compound. The reaction coordinate is defined by the 
use of the gradient of the quantum mechanical hypersurface 
of reacting species and is here obtained by the semiempirical 
C N D O / 2 MO method.7 

Some MO theoretical studies of malonaldehyde have been 
presented.8"10 The position of the proton has been given much 
attention in these works. Schuster8 first calculated the potential 
surface of the proton by the CNDO/2 method. His results 
predicted that the energy barrier for the proton transfer is quite 
low (0.5 kcal/mol). Recently ab initio MO procedure has been 
applied by two groups. Karlstrom et al.9 concluded that the 
stable configuration of this compound is asymmetric and the 
barrier height is calculated to be 11.5 kcal/mol. Isaacson and 
Morokuma10 employed semiempirical (CNDO/2 and INDO) 
and ab initio calculations on this molecule and proposed the 
condition for a neutral hydrogen bonding system to have a 

symmetric configuration. They suggested the possibility of 
malonaldehyde having a symmetric hydrogen-bonding proton 
on the basis of their hypothesis. 

After our work had been submitted for publication, the 
microwave study by Rowe, Duerst, and Wilson" was pre­
sented. The existence of a symmetric double minimum po­
tential with a relatively low barrier has been concluded from 
their experiments. 

The behavior of proton in malonaldehyde is characterized 
by the rapid movement from one well to another in the thermal 
energy range. Therefore, the determination of the position of 
proton is a statistical or stochastic problem. In view of these 
circumstances, it seems to be interesting to interpret the sta­
tistical feature of proton exchange in malonaldehyde. 

The purpose of the present paper is to calculate the quantum 
mechanical state of malonaldehyde on the basis of the 
CNDO/2 potential surface. The distribution of proton on the 
reaction coordinate and the rate of transformation between two 
conformers have also been calculated and discussed with 
relation to the temperature. 

Theoretical Description of Quantum Mechanical State 

In this section, we give a brief description of the quantum 
mechanical model for the motion of the reacting system. 

Reaction Coordinate. The reaction coordinate is defined in 
the framework of the Born-Oppenheimer potential 

Hel{r,X)*el(r,X) = W(#)* e l ( r , f l ) (1) 

where He\ is the electronic hamiltonian, $e] is the electronic 
wave function, W is the Born-Oppenheimer energy, and r and 
Jl are the electronic and the nuclear position vectors, respec­
tively. 

Let us consider a reacting system including N atoms. At a 
nonequilibrium point on the reaction coordinate, the direction 
of displacement of nuclear configuration along the reaction 
coordinate is given by the use of potential energy gradients as 
follows:6 

_ Mg (LXg _ Mg AYg _ Mg 6.Zg 

" ~ dW/dXa ~ dW/dYg ~ dW/dZg 

- . . . ( o r - 1 ,2 , . . . , JV) (2) 

where Xa, Ya, and Za are the Cartesian coordinates of nucleus 
of mass Ma. The Eckart condition to fix the translation and 
rotation of the center of gravity12 is automatically satisfied in 
eq2: 6 

E Mg AXg = L Mg AYg = £ Mg AZg = O 
a a a 

and 
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E Ma(Xa dYa - Ya dXa) = E Ma(Ya dZa - Za dYa) 
a a 

= ZMa(ZadXa-XadZa) = 0 (3) 

Here we adopt the mass-weighted Cartesian coordinates, 
x\, x 2 , . . . , x3Ai, so that eq 2 is rewritten as 

dxi dx2 dx 3/V 
dW/dxi dW/dx2 '' ' dW/dx3N 

(2a) 

These equations determine an infinite number of curves in the 
3jV-dimensional space spanned by these coordinates. If we 
designate the length measured along one such curve as S, we 
have 

dx; dW/dxi 

ds dw/ds(l ' " • " ; 

where 

-(I ,©2) ' dW . /3A; /bW\2VI2 

(4) 

(5) 

The sign of eq 5 is plus for an ascending path and minus for a 
descending path. Such a curve which passes three equilibrium 
points, the initial system, the transition state, and the final 
system of a given reaction path, is termed an "intrinsic" re­
action coordinate of that reaction.6 

At an equilibrium point, the displacement vector in the di­
rection of the reaction coordinate is given by one of the ei­
genvectors derived from the following secular equation: 

det(ix^xT^) = 0 

(/,_/'= 1 , 2 , . . . , 37V; K = const) 

(6) 

Among 3./V eigenvectors, six with zero eigenvalue correspond 
to the translation of the center of gravity and the rotation about 
the center of gravity. The nuclear configuration along the re­
action coordinate is obtained when we solve the simultaneous 
equation, eq 4, by setting the initial condition such that the 
solution conforms to one of the normal coordinates of an 
equilibrium configuration. 

In order to describe the internal motion of the reacting 
system, we have to determine the 3N — 6 internal coordinates. 
Since six redundant coordinates can be eliminated by the use 
of eq 3, we can define the local coordinate system j | ] (S), ^(S), 
. .., %f(S)\ at any point on the reaction coordinate, which is 
connected with the components of the infinitesimal displace­
ment vector 

dx^i^dtj 

where / = 3/V — 6 is the internal degree of freedom. When we 
set d£i to the displacement vector along the reaction coordi­
nate, the remaining coordinates £,• (i = 2, 3 , . . . ,J) satisfy the 
relation 

dW= w J)WbX1 

d£, j= i dx, d£,-

dW IN dx dx, dW 

dS j={ dS d|,- dS = ^ r 5 H (7) 

Then we can get the coordinate system {fi, £2. • • •. I/) which 
is orthogonal to the reaction coordinate and satisfies eq 7. 

Schrodinger Equation. The general form of the quantum 
mechanical hamiltonian can be written by the use of the 
coordinate system defined in the previous section as:13-14 

+ £ KTTgUg 
/=2 \d£ i 

-1/2 A 
e*i 

2- ** g,jg d£. j + 2- Trgijg 
/.7 = 2 d& 

g 1/4 

+ W(^, h. • • • •£ / ) (8) 

with 

and 

g = det(gij) 

(gtj) = (*y)- ' 

The matrix (gtj) is the ordinary kinetic tensor with its ele­
ments 

- = f i>xk dxk 
SiJ A ds, ditj 

( / , ;= 1 ,2 ,3 , . . . , / ) 

(9) 

From the definition of the reaction coordinate, the kinetic 
tensor is diagonal on the reaction coordinate. When we expand 
them by a power series of the vibrational coordinates, | , (i = 
2,3,...,J), 

In = 1 + 
/=2 V d|/ / 0 

7=2 V d £ / / o 

and 

it] = 5h 

the kinetic energy term of eq 8 is approximated to the first 
order of the expansion: 

d£,2 

_ f (MIL) A _ f (dli>) t (• 
dfid{/ 

+ • Hr)+ i £1 (10) 
The potential part of the hamiltonian is divided into two 

parts 

mtu-12, £3,. • •, I/) = Wi« i ) + ^ 2 ( I i ; I) ( H ) 

and 

W2(|,;0)=0 

where £ = (I2. £3> • • •, £/)• The first term of eq 11 means the 
change of potential energy along the reaction coordinate and 
the second one is that of vibrational coordinates except for the 
reaction cdbrdinate. This term is approximated as the sum of 
the contributions of each vibrational coordinate 

W-:«•;*) =* £ tfy«i;&) (12) 

We now define the zeroth order vibrational hamiltonian, 
which corresponds to the motion perpendicular to the reaction 
coordinate 

H,--\i 21-2 l d | r 
(13) 

The eigenfunction is expressed as the product of respective 
vibrational wave function, 
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Figure 1. Optimized geometries of the initial and transition states. Bond 
length and angle are given in A and deg, respectively. 

HW*K = EXV(ZMK 

and 

^K -r i 
/=2 

XK1 

(14) 

(15) 

In eq 14 and 15, the suffix K represents the combination of the 
quantum number of respective modes. The wave function XK, 
satisfies the relation 

IA2 

' 2 dfc 
2 + W2

1UiXt) XKi=IKi(Sl)XKi (16) 

and 

£*vtti) = E eKl(h) 
i -2 

(17) 

The wave function of the reacting system can be expanded 
by the vibrational wave function 15: 

*«. ;{) = E K * « I ) I M * I ; * ) (18) 
K 

Using eq 9, 13, 14, and 18, the Schrodinger equation 

H-9(k\!i) = £*tfi;«) 

can be written by the following coupled equation: 

"2d?, 
;+ W l « l ) + £ * v « l ) - £ Kjcttl) 

£ d2W 
< Xtf,| & | X A : , - i > dW/dh /=2 dfodf i 

/ 1 d2 \ 
x r 2 ^ ) B A : - | ( " ( { , ) 

• 2 X d2W . . 
awyd{w--2d&d{, x * ' l * ' l x * ' + , ; 

X ( - J ^ T l ) «A:+I(I)(II) + higher order terms (19) 

where K - \(i) and K + \(i) imply to up and down one 
quantum number of the /th vibrational mode. The derivation 
of eq 19 is straightforward and is not shown here. 

The vibrational adiabatic approximation is imposed by the 
rhs of eq 19 to be zero. The conditions where the nonadiabatic 
correction is important are (1) the motion along the reaction 
coordinate has high kinetic energy and (2) the curvature of the 
reaction coordinate is large, which are easily expected from 
eq 19. When we treat the statistical ensemble of the proton 
motion in the thermal region, the nonadiabatic correction can 
be assumed to be negligible or cancelled. Thus eq 19 is ap­
proximated as 

^TTI + W\U\) + EK
v(Zi) ~ E\UKUI) = 0 

2 d | r J 

Effective Potential for Proton Transfer 

At first, we calculated the reaction coordinate for the proton 
exchange in malonaldehyde within the CNDO/2 approxi­
mation. 

The reaction coordinate is assumed to have B2 symmetry 
of the Cs point group. The geometry of the equilibrium points 
on the reaction coordinate was optimized by the use of the 
variable metric procedure of Mclver and Komornicki.15 The 
derivative of the potential energy was obtained by the 
CNDO/2 version of the SCF formalism for a system with 
doubly occupied orbitals16 

dW = 

dXk BF^A 
Z A Z I 

dxk 

- (PAAZE 

+ PBBZA — PAAPBB) 

X (2P111, 

S T A B 

dxk 

dxk 

A B 

+ E E E 
B^A 11 v 

£>7AB> 

*" dxj 
(20) 

where the coordinate xk belongs to atom A. The notation of 
eq 20 is the same as in the original CNDO/2 formulation of 
Pople et al.7 The geometries of the initial and transition state 
are shown in Figure 1. The CNDO/2 optimization of geome­
tries within Cs symmetry framework predicts that the asym­
metric configuration is stable and the barrier height is 1.04 
kcal/mol. The difference in the results of Schuster or Isaacson 
and Morokuma seems to originate from the optimization of 
the backbone structure. The normal coordinates of the equi­
librium points were calculated as the eigenvectors of eq 6, 
where the second derivative of the potential energy is calculated 
by the numerical differentiation of the potential gradient. In 
eq 6, the mass of the H atom has a value of 1836.12 au. The C 
and O atoms are 12 and 16 times the mass of H, respectively. 
Figure 2 shows the relative magnitude and the direction of the 
displacement vectors along the reaction coordinate at the ini­
tial, transition, and final states. The reaction coordinate was 
calculated by the approximate form of eq 4. 

(21) 
Ax1- = dW/dXi 
AS dW/dS 

Equation 21 was solved with the step size 0 . 0 5 ( M H ) ' / 2 au, 
where M\\ is the mass of the H atom. The energy change 
caused by one step is about 0.1 kcal/mol. The potential energy 
along the reaction coordinate, Wi (£1), is shown in Figure 3. 
The initial state is located at - 0 . 6 3 ( M H )

 l / 2 au, when the point 
of the transition state is chosen to be zero. 

The second step of the calculation is to determine the po­
tentials for the vibrational coordinates which are perpendicular 
to the reaction coordinate. We calculated the normal coordi­
nates at eight points on the reaction coordinate from £1 = —« 
to 0. Among 20 vibrational coordinates, the number of in-plane 
modes is 14 and the remainder is out-of-plane modes. It is very 

Journal of the American Chemical Society / 99:3 / February 2,1977 



687 

-o o-
H-*7T. 

CZ 

initial transition 
Figure 2. Displacement vectors along the reaction coordinate at three equilibrium points. 
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Figure 3. Potential energy profile along the reaction coordinate. The 
scale of reaction coordinate is (Mn) ' /2 au. 

interesting for us that there is one out-of-plane vibrational 
mode with a negative force constant. The component of the 
displacement vector corresponding to this vibrational mode 
is given in Figure 4. Although malonaldehyde has been pre­
dicted to be a planar molecule in previous studies, the result 
of CNDO/2 calculation forecasts that the stable geometry of 
this molecule is nonplanar. The reason for this negative force 
constant is expected by the consideration of the symmetry 
properties of the frontier orbitals in malonaldehyde. The second 
order perturbation expression of force constant is given as17 

d2W 
- ( 

d2W\ K- HIfI') 
(22) 

dfc2 \ l d | , 2 r / T E0-E1 
where V is the sum of nuclei-electron and nuclear repulsion 
potentials in the electronic hamiltonian, the bra-ket is the 
electronic wave function, and the suffixes O and I imply the 
ground and excited states, respectively. As Bader'8 suggested, 
if (1) the direct product of the irreducible representation of the 
highest occupied (HO) MO and the lowest unoccupied (LU) 
MO coincides with the irreducible representation of the vi­
brational coordinate and (2) the transition density of these 
MO's is localized to the direction of the displacement vector, 
the second term of eq 21 plays a dominant role to reduce the 
force constant. Figure 5 shows the schematic representation 
of HOMO and LUMO at the transition state, where the 
above-mentioned conditions are well satisfied. This vibrational 
coordinate is termed as £2 and the remaining coordinates as 
I, (i = 3, 4,. . . , 21), For 19 vibrational coordinates having the 
positive force constants, the potentials are approximated by 
the harmonic form 

»V«i;f 1) = xkKi(ixW< (23) 

In Table I, the vibrational frequencies and assignment of 
them at the transition state are given. Although there is, to our 
knowledge, no available experimental data of vibrational 
spectra of malonaldehyde, the enol acetylacetone, the dimethyl 

init ial t ransit ion 
Figure 4. Displacement along one out-of-plane vibrational coordinate with 
a negative force constant. 

^A HOMO 

I VJ H -11.9 ev 

Figure 5. Schematic representation of nodal properties of HOMO and 
LUMO and their energies. 

derivative of malonaldehyde, has been extensively studied by 
means of an IR and a Raman spectroscope in both gas and 
liquid phases.19 The normal coordinate analysis has alo been 
performed by Ogoshi and Nakamoto.20 As seen in Table I, the 
CNDO/2 calculation of the vibrational frequencies somewhat 
overestimated on the whole, comparing with the experimental 
values of acetylacetone. The stretching mode shows the most 
serious discrepancy, which is 1.6 times the experimental values. 
Since the vibrational frequencies depend on the reaction 
coordinate, they are represented as 

w/«i) = «,-(0) + Ao)1-(S,) (24) 

where a>,(0) is the frequency at £1 =0 and Aw,(£1) denotes the 
difference from OJ,(0). The change of vibrational frequencies 
with respect to the reaction coordinate, Ao>,(£i), is shown in 
Figure 6. The 0-H stretching mode couples with the reaction 
coordinate most distinctly and changes its frequency in the 
process of the proton transfer. 
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IN-PLANEMODE OUT-OF-PLANE MODE 

i, i, 
Figure 6. Change of vibrational frequencies with respect to the reaction coordinate. The number of vibrational modes is the same as in Table 1. The scale 
of the reaction coordinate is the same as in Figure 3. 

Table I. Normal Coordinates at the Transition State 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

Freq, 
cm-1 

4684 
4538 
4536 
3094 
2647 
2217 
2039 
1897 
1468 
1424 
1280 
973 
672 
572 

1221 
1186 
944 
791 
358 

Symmetry 

A, 
A1 
B, 
BT 

A, 
B, 
A1 
A1 

B, 
A1 

A1 

A, 
A, 
B2 

(a) 

Nature of vib 

n-Plane Mode 
C-H stretching 
C-H stretching 
C-H stretching 
O-H stretching 
C-O stretching 
C-O stretching 
O-H-O bending 
C-C stretching 
C-H bending 
C-H bending 
C-H bending 
Ring deformation 
Ring deformation 
Ring deformation 

(b) Out-of-Plane Mode 
A2 
B, 
B, 
B, 
A. 

C-H bending 
C-H bending 
O-H-O bending + C-H bending 
O-H-O bending + C-C-C bending 
Ring deformation 

For the vibrational mode with negative force constant, £2, 
the potential is approximated by the sixth order polynomial. 
The wave function is expressed by a linear combination of 20 
harmonic functions 

X2(fe) = L CnNnHn(Vh) exp(-'/2 «£2
2) (25) 

«=0 

where Nn is the normalization constant and #„(«£2) is the 
Hermite polynomial. The coefficients, Cn, are determined by 
the variational procedure. The scaling factor, a, is optimized 
by the minimization of the sum of root mean square deviation 
of eigenvalues21 

AE = jr ((m\H\m)2- {m\H2\m)Y'2 (26) 

where H is the vibrational hamiltonian for £2 and M is chosen 
to be 1. The mean square error AE is calculated to be within 

1% of the difference between the eigenvalues of the ground 
state and the first excited one for all values of £1. In Figure 7, 
some lower eigenvalues of vibration £2 are shown. The ground 
state energy is slightly below the top of the barrier at the 
transition state and becomes higher with distance from this 
point. 

We can thus determine the effective potentials for the mo­
tion on the reaction coordinate 

JVfl'(£i) = W1(M + £*v(£i) 

which is specified by the combination of the quantum number 
of vibrations perpendicular to the reaction coordinate 

K = («2.«3 , " 2 1 ) 

Figure 8 shows the effective potential for the zero-point vi­
bration, where all vibrational quantum numbers are zero. The 
energy barrier height for the proton transfer reaction is lowered 
to 0.6 kcal/mol, and the position of the potential minimum 
becomes closer to the transition state, which is mainly caused 
by the contibution of the out-of-plane £2 vibrational mode. 

Statistical State of Malonaldehyde 
Density Matrix. The analytical form of the effective po­

tential along the reaction coordinate is expressed by the com­
bination of the eighth order polynomial and one Gaussian 
function 

^ e f f(£i) = L aK,,y + AK exp( -^£ , 2 ) 
;=o 

(27) 

The parameters OK,,, AK, and BK were determined by the 
least-squares method. The variational procedure, with 20 
harmonic functions, was used to obtain the eigenvalues of them 
as in the case of f^22(£i)' The matrix elements are easily de­
rived by the method of Chan and Stelman.22 The scaling factor 
was determined by the minimization of eq 26. The optimization 
was carried out to the zero-point potential in which all vibra­
tions have zero quantum number. The same scaling factor was 
taken for all the effective potentials throughout. Some eigen­
values of the potential Koeff(£i) are shown in Figure 8. The 
ground state energy is slightly below the top of the barrier. The 
spacing of the energy spectrum differs from the case of har­
monic potential. The remaining potentials have on the whole 
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Figure 7. Change of eigenvalues for the £2 vibrational mode with respect 
to the reaction coordinate. The scale of the reaction coordinate is the same 
as in Figure 3. 

a similar form of energy the level interval as Koeff(£i). Some 
of them have the ground state energy level highly bounded to 
the wells. 

In order to describe the quantum statistical state of malo­
naldehyde, we have assumed the canonical ensemble in the heat 
bath of a given temperature. The vibrational state of the 
molecule is represented by the density matrix. The density 
matrix of the steady state is diagonal and given as 

P(SuS) = L Z exp(-EKm/KT) 

* VKnS(SIiWKmUrMZ(T) (28) 

and 

Z(T) = E Z exp(-EKm/KT) 
K mEK 

where E^n, is the wth eigenvalues of the Kih effective poten­
tial, K is the Boltzmann constant, T is the absolute temperature, 
and Z(T) is the vibrational partitioning function. When we 
integrate eq 28 by the vibrational coordinates, £, we can define 
the density matrix on the reaction coordinate 

P(I1) = JV>(f.;0d{ 

= £ 
K , 

E exp(-EKnjKT)uKm*(S\)uKm(lx)/Z(T) (29) 
•?eK 

This density matrix implies the projection of the molecular 
conformer on the reaction coordinate. The projected density, 
p(£i), was calculated for various temperatures from 0 to 500 
K, where the summation of eq 29 was truncated when the 
condition 

exp{-(£V„, - £OO)/1000K| < IO"4 

is satisfied. The calculation includes about 70 effective po­
tentials. Figure 9 illustrates the projected density of malon­
aldehyde, p(£i), at 0, 300, and 500 K, respectively. As is seen 
in Figure 9, there exists a hollow at the middle point of the 
reaction coordinate, and, with the increase of temperature, it 
becomes deep and the density distribution is biased to the side 
region. This effect is easily realized by the populations of en­
ergy levels of the motion on the reaction coordinate. In Table 
II, the occupancies of respective energy levels at 100, 300, and 
500 K are listed.23 As the temperature increases, the contri­
butions of the excited states become large and the first excited 
state plays the important role in the change of density distri­
bution. 

O 

F 
^ b 
IB 

5 

U 

i 

2 

1 

0 

-1 

\ 

-1 0 
Sr 

3 

2 

1 / 

0 / 

1 

Figure 8. Profile of the effective potential K0
erf(£i) and some lower ei­

genvalues for this potential. The scale of reaction coordinate is the same 
as in Figure 3. 

Figure 9. Density projected on the reaction coordinate at 0, 300, and 500 
K. The scale of the reaction coordinate is the same as in Figure 3. 

Proton Transfer Rate. In order to obtain the proton transfer 
rate, we have separated the conformation of malonaldehyde 
into two parts, which is realized by dividing the effective po­
tential, KKcff(£|), at the transition state. The phenomenological 
expression for the proton transfer rate is given as in the con­
ventional form: 

d«A(0 
d/ 

= -kAB(t)nA(t) + kBA(t)ns(t) (30) 

here nA(t) and « B ( 0 are the population of wells A and B, 
kAB(t) is the rate from A to B, and kBA(t) is the rate of the 
reverse direction, respectively. Since the potential is symmetric, 
kAB(t) is equal to kBA(t). The mean rate is defined from eq 
30: 

C kAB(t')dt' 
k = lim 

= _ l i m ln[2HA(Q//»A(0)-l] 
,-== t 

When we define the projection operator 

^A = E PlA = E 0,'A0, ,* 
'A i,\ 

the population of the well A, n\(t), is given by 

nA(t) = Tr(p(Zr&t),PA) 

(31) 

(32) 

(33) 
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Table It. Population of Energy Levels for the Motion on the 
Reaction Coordinate 

Level No. 100 K 300K 500K 

0 
1 
2 
3 
4 

0.9928 
0.0072 
0.0000 
0.0000 
0.0000 

0.8464 
0.1495 
0.0040 
0.0001 
0.0000 

0.7289 
0.2404 
0.0270 
0.0036 
0.0001 

0.5 

0°K 

0.5 1 
Hio-"...) 

1.5 

where 0, A is the /th eigenfunction of the well A and p( | j ;|;f) 
is the density matrix when the time is t. The eigenfunction 0,A 

is variationally determined by imposing the boundary condition 
that there is no amplitude in region B. The wave function is 
approximated by 

0 / A « I ) = * « I ) 

X E C / A
m7Vm / /m (a | 1 )exp(- 1 / 2a | , 2 ) 

Im = O 
(34) 

where the normalization constant, Nn,, is given as 

Nn 
\(TT)1 /2 2 ' " - 1 W ! / 

1/2 

and the function 0(£i) is a step function satisfying the condi­
tion: 

1 « i < 0 ) 

.0 (Si > 0) 

The same scaling factor as in the parent double-well potential 
is used to calculate 0,A( | i ) . The density matrix of the initial 
time is expressed by the use of the statistical operator 

Wi) = (35) 

(36) p(*i;{;0) = I>iA»fA(0)*/A* 
'A 

and the initial population is given as 

HiM=TMhMJ ( 3 ? ) 

where p(£i;£) is the density matrix of steady state. The time 
development of the density matrix is obtained by the use of the 
evolution operator 

U(t) = exp{-iHt) 

Then the population of the region A at the time t is calculated 
by 

«A(0 = E I L exp|i(£*/ - EKJ)t\ 
K L ij e K 

X E / i *A (0)5 a A^.*A*S, . ,A^. / , / l (38) 
*AA J 

where S/.AA* is the overlap integral 

S,.kA
K= J"«*,-(*i)0/A*(*i)d$i 

In Figure 10, the time evolution of the population n\{t) is 
shown, in which some different features compared with the 
classical analogue are seen. A steady region exists where n\{t) 
is about 0.75, though the classical propagation is characterized 
by the exponential decay. The steady state is considered to 
originate from the interference between the wave propagating 
from A to B and the wave of opposite direction. 

The rate of the proton transfer was calculated from eq 31. 
The rate is almost constant over the whole temperature range 
and is calculated to be 9 .77XlO 1 3 S - 1 . The activation energy 
of this process is nearly zero. The time interval of proton 
transfer from one well to another is 1.02 X 10 - 1 2 s. 

The calculated result of proton transfer time implies that 

0.5 

300K 

0.5 1.5 

0.5 

500K 

0.5 1.5 

Figure 10. Time development of the population in the region A at 0, 300, 
and 500 K. 

the movement of the hydrogen-bonded proton is very quick 
with the order of a low frequent molecular vibration. 

Discussion 

Until now we have treated the dynamic behavior of the hy­
drogen-bonded proton of malonaldehyde by means of the 
"intrinsic" reaction coordinate. All vibrational motion per­
pendicular to the proton transfer coordinate (reaction coor­
dinate) was taken into account. These vibrational motions were 
seen to affect the motion on the reaction coordinate in the case 
when the potential barrier is very low as in the present system 
compared with the usual chemical reaction where the activa­
tion barrier is moderately high. 

The calculation of the vibrational state of malonaldehyde 
shows that the rapid transformation occurs between the two 
asymmetric conformers through the low potential barrier. This 
result is consistent with the microwave prediction of proton 
motion by Rowe, Duerst, and Wilson." In some previous MO 
calculations,810 the position of proton in this molecule has 
received much attention and different conclusions have been 
derived. The proton is a quantum mechanical particle and has 
the zero-point energy even at 0 K, so the position of the proton 
is a probability problem. In our statistical calculation, the 
distribution of the hydrogen-bonded proton on the reaction 
coordinate varies with the increase of temperature, and the 
mean position of the proton is symmetric in the low-tempera­
ture range and becomes oriented asymmetrically at the high 
temperature. 

Our CNDO/2 calculation of the potential energy surface 
of malonaldehyde suggested the existence of one out-of-plane 
vibrational motion with a negative force constant. Then the 
energy minimum path for the proton has an ellipse like profile 
and its motion is considered to contain the orbital angular 
momentum. When we assumed that the vibrational frequency 
is proportional to the energy gap between the ground state and 
the first excited one, the frequencies of the motion on the mode 
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£2 and the reaction coordinate are the same order (see Figures 
7 and 8), which further convinces one of the elliptical orbital 
of the hydrogen-bonded proton of malonaldehyde. 

Of course, the result in this paper fairly depends on the ac­
curacy of the calculated potential energy surface. It is well 
known that the CNDO/2 method reproduces the bond length, 
bond angle, and hydrogen bond energy well. The overestimate 
of the C-H stretching frequencies does not affect the results, 
since the change of frequencies along the reaction coordinate 
is sufficiently small. The complete geometry optimization and 
the normal coordinate calculation are of advantage in the 
present work. It should be noted that an arbitrary displacement 
of out-of-plane coordinate does not lower the potential energy,8 

whereas only one of six vibrational coordinates has a negative 
force constant on the reaction coordinate. 

Compared with the microwave spectra, the calculated po­
tential barrier along the reaction coordinate may be underes­
timated. Nevertheless, we believe that the essential result ob­
tained in the present paper will not be altered by the use of a 
more reliable potential surface. 

The method proposed in the present paper is also applicable 
to any type of unimolecular reaction. The dynamic nature or 
the rate of unimolecular reaction is under development at the 
present. These works are in progress and will be presented in 
the near future, so this paper will be regarded as a preliminary 
of this series. 
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As a part of a continuing study of the effect of fluorine 
on bond dissociation energies, we have recently reported on the 
kinetics of the gas phase reaction of 1,1-difluoroiodoethane 
with hydrogen iodide from which we derived DH°(CH3CF2-I) 
= 52.1 ± 1 kcal/mol.' In this study, we wish to report the ki­
netics and thermochemistry of the reverse reaction, namely, 
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1,1-difluoroethane with iodine, from which we derive values 
for the CF 2 -H bond dissociation energy, DH=(CH 3CF 2-H), 
and the enthalpy of formation of 1,1-difluoroethyl, 
A// f

0(CH3CF2,g,298). These are the first quantitative results 
on the effect of a fluorine substituents in ethanes and their 
comparison with previous results on the effects of /? fluorine 
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Abstract: The kinetics of the gas phase reaction of 1,1-difluoroethane with iodine have been determined over the temperature 
range 609 to 649 K. It was found that the initial stoichiometry was consistent with the reaction CH3CF2H + I2 *± CH3CF2I 
+ HI but true equilibrium for this reaction was not obtained due to Hl elimination from CH3CF2I which resulted in CH3CFiI 
reaching a steady state concentration at about 80 to 90% of its equilibrium value. However, kinetic data for the forward reac­
tion obtained in the initial stages of reaction and at steady state were combined with previous results for the reverse reaction1 

to yield equilibrium constants over this temperature range from which AHr°(298) = 12.2 ± 0.2 kcal/mol was obtained and 
DH°(CH3CF2-H) = 99.5 ± 1 and Atff°(CH3CF2,g,298) = -72.3 ± 2 kcal/mol were derived. A comparison of the effects 
of a and /3 fluorine substituents on the C(sp3)-X (X = H, I, and F) bond dissociation energies is made. 
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